Here we have the same two link robot as we just looked at but this time we're going tosolve it using an analytical approach , that is we're going to rely much more on algebra ,particular linear algebra rather than geometry . |
在這裡,我們有與前一篇相同的兩連桿機械手臂,但這次我們將使用分析方法來解決它,意味著我們將更多地依賴代數,特別是使用線性代數而不是幾何。 |
We have an expression E , which is the homogeneous transformation which represents the pose of the robots endefector and we looked at this in the last lecture , we can write the endefector pose as a sequence of elementary homogeneous transformations . |
我們有一個表達式 E,它是表示機械手臂最終位置的齊次變換式,我們在上一課中看到了這一點,我們可以將最終位置寫為一系列基本齊次變換式。 |
A rotation by Q1 , a translation along the X direction by A1 , a rotation by Q2 and then a translation in the X direction by A2 . |
Q1 旋轉,A1 沿 X 方向平移,Q2 旋轉,然後 A2 沿 X 方向平移。 |
If I expand this out , multiply all the transformations together , I get the expression shown here ; a three by three homogeneous transformation matrix representing the pose of the robot's endefector. |
如果我將其展開,將所有變換相乘,就會得到此處所示的表達式 E ;它是一個三乘三的齊次變換矩陣,表示機械手臂的最終的位置。 |
Now for this particular two link robot , we are only interested in the position of its endefector , it's X and Y co - ordinate and they are these two elements within the homogeneous transformation matrix , so I'm going to copy those out . |
現在對於這個特殊的兩連桿機器人,我們只對它的最終位置感興趣,與它有關的是 X 和 Y 坐標,它們是齊次變換矩陣中的這兩個元素,所以我將把它們複製出來。 |
So here again is our expression for X and Y and what we're going to do is a fairly common trick , we're going to square and add these two equations and I get a relationship that looks like this . |
所以這裡又是我們對 X 和 Y 的表達式,我們要做的是一個相當常見的技巧,我們要將它平方並將這兩個方程相加,我得到一個看起來像這樣的關係式。 |
Now I can solve for the joint angle Q2 in terms of the endefector pose X and Y and the robot's constants A1 and A2. |
現在我可以根據最終位置X和Y以及機械手臂的常數A1及A2來求出關節角度Q2。 |
Now what I'm going to do is apply the sum of angles identity . |
現在我要做的是應用角度之和的特性。 |
I'm going to expand these terms, sine of Q1 plus Q2 or cos of Q1 plus Q2 and to make life a little bit easier, I'm going to make some substations, so where ever I had cos Q2, I'm going to write C2 and where ever I had sine Q2, I'm going to write S2. |
我將展開這些項,Q1 的正弦加 Q2 或 Q1 的餘弦加 Q2,為了讓生活更輕鬆一點,我將建立一些分部,所以只要有 cos Q2,我會將其取代為C2並且在有正弦Q2的地方,我會將其取代為S2。 |
It's a fairly common shorthand when people are looking at robot kinematic equations. |
當人們解決機械手臂運動學方程式時,這是一個相當常見的快速記法。 |
And here are the equations after making those substitutions. |
這是進行替換後的方程式。 |
Looking at these two equations, I can see that they fall into a very well known form and for that form there is a very well known solution. |
看看這兩個方程式,我可以看到它們屬於一個眾所周知的形式,對於這種形式,有一個淺顯易見的解決方案。 |
So I'm going to consider just one of the equations, the equation for Y and using our well known identity and it's solution, I can determine the values for the variables little a, little b and little c and once l've determined those, then I can just write down the solution for Q1, which x is the equivalent of theta in this particular case. |
所以我將只考慮其中一個方程,Y 的方程,並使用我們眾所周知的恆等式和它的解,我可以確定變量小 a、小 b 和小 c 的值,一旦我確定了這些,然後我可以寫下 Q1 的解決方程,在這種特殊情況下,x 相當於 theta。 |
Here again is our expression for Q1, copied over from the previous slide and we may remember from earlier in our workings that we determined this particular relationship; X squared plus Y squared is equal to this particular complex expression. |
這裡再次是我們對 Q1 的表達,從上一張幻燈片複製過來,我們可能還記得在我們早期的說明中,確定了這種特殊關係; X 平方加 Y 平方等於這個特定的複雜表達式。 |
So I can substitute that in and do some simplification and I end up with this slightly less complex expression for Q1. |
因此,我可以將其替換並進行一些簡化,最終得到 Q1 的這個稍微不那麼複雜的表達式。 |
And it is the same expression that I got following the geometric approach in the previous section. |
這與我在上一節中遵循幾何方法求出的表達式一模一樣。 |